3,254 research outputs found

    Super-resolution restoration of spaceborne HD videos using the UCL MAGiGAN system

    Get PDF
    We developed a novel SRR system, called Multi-Angle Gotcha image restoration with Generative Adversarial Network (MAGiGAN), to produce resolution enhancement of 3-5 times from multi-pass EO images. The MAGiGAN SRR system uses a combination of photogrammetric and machine vision approaches including image segmentation and shadow labelling, feature matching and densification, estimation of an image degradation model, and deep learning approaches, to retrieve image information from distorted features and training networks. We have tested the MAGiGAN SRR using the NVIDIA® Jetson TX-2 GPU card for onboard processing within a smart-satellite capturing high definition satellite videos, which will enable many innovative remote-sensing applications to be implemented in the future. In this paper, we show SRR processing results from a Planet® SkySat HD 70cm spaceborne video using a GPU version of the MAGiGAN system. Image quality and effective resolution enhancement are measured and discussed

    Coupled poroelastic modelling of hydraulic fracturing-induced seismicity: Implications for understanding the post shut-in ML 2.9 earthquake at the Preston New Road, UK

    Get PDF
    Post-injection seismicity associated with hydraulic stimulation has posed great challenges to hydraulic fracturing operations. This work aims to identify the causal mechanism of the post shut-in ML 2.9 earthquake in August 2019 at the Preston New Road, UK, amongst three plausible mechanisms, i.e., the post shut-in pore pressure diffusion, poroelastic stressing on a non-overpressurised fault, and poroelastic stressing on an overpressurised fault. A 3D fully-coupled poroelastic model that considers the poroelastic solid deformation, fluid flow in both porous rocks and fracture structures, and hydraulic fracture propagation was developed to simulate the hydromechanical response of the shale reservoir formation to hydraulic fracturing operations at the site. Based on the model results, Coulomb stress changes and seismicity rate were further evaluated on the PNR-2 fault responsible for the earthquake. Model results have shown that increased pore pressure plays a dominant role in triggering the fault slippage, although the poroelastic stress may have acted to promote the slippage. Amongst the three plausible mechanisms, the post shut-in pore pressure diffusion is the most favoured in terms of Coulomb stress change, seismicity rate, timing of fault slippage and rupture area. The coupled modelling results suggested that the occurrence of the post shut-in ML 2.9 earthquake was a three-staged process, involving first propagation of fracture tips that stimulated surrounding reservoir formations, then hydraulic connection with and subsequent pore pressure diffusion to the partially-sealing PNR-2 fault, and eventually fault activation primarily under the direct impact of increased pore pressure

    3D stereo reconstruction: High resolution satellite video

    Get PDF
    Precise high-resolution Digital Elevation Models (DEMs) are essential for creation of terrain relief and associated terrain hazard area maps, urban land development, smart cities and in other applications. The 3D modelling system entitled the UCL Co-registration Ames Stereo Pipeline (ASP) Gotcha Optimised (CASP-GO) was demonstrated on stereo data of Mars to generate 3D models for around 20% of Martian surface using cloud computers which was reported in 2018. CASP-GO is an automated DEM/DTM processing chain for NASA Mars, lunar and Earth Observation data including Mars 6m Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) 25cm stereo-data as well as ASTER 18m stereo data acquired on the NASA EOS Terra platform. CASP-GO uses tie-point based multi- resolution image co-registration, combined with sub-pixel refinement and densification. It is based on a combination of the NASA ASP and an adaptive least squares cor- relation and region growing matcher called Gotcha (Gruen-Otto-Chau). CASP-GO was successfully applied to produce more than 5300 DTMs of Mars (http://www.i- Mars.eu/web-GIS). This work employs CASP-GO to obtain DEMs from high resolution Earth Observation (EO) satellite video system SSTL Carbonite-2. CASP- GO was modified to work with multi-view point-and-stare video data including subpixel fusion of point clouds. Multi-view stereo video data are distinguished from still image data by a richer amount of information and noisier water areas

    Repeat multiview panchromatic super-resolution restoration using the UCL MAGiGAN system

    Get PDF
    High spatial resolution imaging data is always considered desirable in the field of remote sensing, particularly Earth observation. However, given the physical constraints of the imaging instruments themselves, one needs to be able to trade-off spatial resolution against launch mass as well as telecommunications bandwidth for transmitting data back to the Earth. In this paper, we present a newly developed super-resolution restoration system, called MAGiGAN, based on our original GPT-SRR system combined with deep learning image networks to be able to restore up to 4x higher resolution enhancement using multi-angle repeat images as input

    Performance of global 3D model retrievals of the Martian surface using the UCL CASP-GO system on CTX stereo images on Linux clusters and Microsoft Azure cloud computing platforms

    Get PDF
    In this paper we introduce the Mars planet-wide 3D surface modelling work performed within the EU FP-7 iMars project which completed last year. In this report, we describe a fully automated multi-resolution DTM processing chain developed by the Imaging Group at UCL-MSSL, called CASP-GO based upon the heritage NASA Ames Stereo Pipeline (ASP) and the Gotcha image matcher. The CASP-GO system has been integrated into the Microsoft Azure cloud computing environment and successfully processed ~5,300 unique CTX DTMs covering ~19% of the Martian surface at 18m resolution

    Massive stereo-based DTM production for Mars on cloud computers

    Get PDF
    Digital Terrain Model (DTM) creation is essential to improving our understanding of the formation processes of the Martian surface. Although there have been previous demonstrations of open-source or commercial planetary 3D reconstruction software, planetary scientists are still struggling with creating good quality DTMs that meet their science needs, especially when there is a requirement to produce a large number of high quality DTMs using "free" software. In this paper, we describe a new open source system to overcome many of these obstacles by demonstrating results in the context of issues found from experience with several planetary DTM pipelines. We introduce a new fully automated multi-resolution DTM processing chain for NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo processing, called the Co-registration Ames Stereo Pipeline (ASP) Gotcha Optimised (CASP-GO), based on the open source NASA ASP. CASP-GO employs tie-point based multi-resolution image co-registration, and Gotcha sub-pixel refinement and densification. CASP-GO pipeline is used to produce planet-wide CTX and HiRISE DTMs that guarantee global geo-referencing compliance with respect to High Resolution Stereo Colour imaging (HRSC), and thence to the Mars Orbiter Laser Altimeter (MOLA); providing refined stereo matching completeness and accuracy. All software and good quality products introduced in this paper are being made open-source to the planetary science community through collaboration with NASA Ames, United States Geological Survey (USGS) and the Jet Propulsion Laboratory (JPL), Advanced Multi-Mission Operations System (AMMOS) Planetary Data System (PDS) Pipeline Service (APPS-PDS4), as well as browseable and visualisable through the iMars web based Geographic Information System (webGIS) system

    Subpixel-Scale Topography Retrieval of Mars Using Single-Image DTM Estimation and Super-Resolution Restoration

    Get PDF
    We propose using coupled deep learning based super-resolution restoration (SRR) and single-image digital terrain model (DTM) estimation (SDE) methods to produce subpixel-scale topography from single-view ESA Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) and NASA Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) images. We present qualitative and quantitative assessments of the resultant 2 m/pixel CaSSIS SRR DTM mosaic over the ESA and Roscosmos Rosalind Franklin ExoMars rover’s (RFEXM22) planned landing site at Oxia Planum. Quantitative evaluation shows SRR improves the effective resolution of the resultant CaSSIS DTM by a factor of 4 or more, while achieving a fairly good height accuracy measured by root mean squared error (1.876 m) and structural similarity (0.607), compared to the ultra-high-resolution HiRISE SRR DTMs at 12.5 cm/pixel. We make available, along with this paper, the resultant CaSSIS SRR image and SRR DTM mosaics, as well as HiRISE full-strip SRR images and SRR DTMs, to support landing site characterisation and future rover engineering for the RFEXM22

    Extraction of bodily features for gait recognition and gait attractiveness evaluation

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-012-1319-2. Copyright @ 2012 Springer.Although there has been much previous research on which bodily features are most important in gait analysis, the questions of which features should be extracted from gait, and why these features in particular should be extracted, have not been convincingly answered. The primary goal of the study reported here was to take an analytical approach to answering these questions, in the context of identifying the features that are most important for gait recognition and gait attractiveness evaluation. Using precise 3D gait motion data obtained from motion capture, we analyzed the relative motions from different body segments to a root marker (located on the lower back) of 30 males by the fixed root method, and compared them with the original motions without fixing root. Some particular features were obtained by principal component analysis (PCA). The left lower arm, lower legs and hips were identified as important features for gait recognition. For gait attractiveness evaluation, the lower legs were recognized as important features.Dorothy Hodgkin Postgraduate Award and HEFCE

    Electronic stress tensor analysis of hydrogenated palladium clusters

    Get PDF
    We study the chemical bonds of small palladium clusters Pd_n (n=2-9) saturated by hydrogen atoms using electronic stress tensor. Our calculation includes bond orders which are recently proposed based on the stress tensor. It is shown that our bond orders can classify the different types of chemical bonds in those clusters. In particular, we discuss Pd-H bonds associated with the H atoms with high coordination numbers and the difference of H-H bonds in the different Pd clusters from viewpoint of the electronic stress tensor. The notion of "pseudo-spindle structure" is proposed as the region between two atoms where the largest eigenvalue of the electronic stress tensor is negative and corresponding eigenvectors forming a pattern which connects them.Comment: 22 pages, 13 figures, published online, Theoretical Chemistry Account
    corecore